

Tetrahedron Letters 43 (2002) 5971-5972

Intramolecular electrophilic aromatic substitution reactions with methyl vinyl ethers for the synthesis of dihydronaphthalenes

David C. Harrowven* and Melloney J. Tyte

Department of Chemistry, The University of Southampton, Southampton SO17 1BJ, UK

Received 20 May 2002; accepted 27 June 2002

Abstract—A simple and inexpensive method to effect the conversion of 4-arylalk-1-en-1-yl methyl ethers to dihydronaphthalenes has been developed. Cyclisation is accomplished by warming a toluene solution of the substrate with 1,2-ethanediol and *para*-toluenesulfonic acid and proceeds via in situ formation of a 1,3-dioxolane. Reactions generally give good yields and have been successful with electron rich, unsubstituted and halogenated arenes. They display excellent regioselectivity; appearing to follow the course of lowest steric demand. © 2002 Elsevier Science Ltd. All rights reserved.

During studies directed towards the marine diterpene pseudopterosin, we had cause to prepare dihydronaththalene 2.¹ The route envisioned involved homologation of aldehyde 1 followed by a cyclodehydration to 2. In the event this proved troublesome. However, through the simple expedient of warming a toluene solution of methyl vinyl ether 3 at 80°C in the presence of 1,2-ethanediol and *para*-toluenesulfonic acid, cyclisation to 2 could be achieved in high yield (Scheme 1).² In this letter we highlight that transformation together with some studies on its scope and limitations.

A series of methyl vinyl ethers were prepared in order to examine the transformation's generality. Pleasingly,

^{*} Corresponding author.

all gave the reaction in yields ranging from 66% to 91% (Table 1). In each case a transient 1,3-dioxolane intermediate could be detected by thin layer chromatography, though these were not isolated.³ As expected, it was necessary to extend reaction times from 4 to ca. 24

Table 1. Further examples

a: isolated yield, all compounds were characterised by 1 H and 13 C NMR, IR, UV, LRMS and HRMS.

0040-4039/02/\$ - see front matter @ 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)01253-4

Scheme 2.

hours for the 2-methoxy-, unsubstituted and 3-chloroderivatives, 5c to 5e, respectively. Notably, when both *ortho*- positions were unsubstituted, reactions displayed excellent regioselectivity, seemingly favouring cyclisation through the course of lowest steric demand (Table 1 entries **a**, **b** and **e**).

Finally, we have also shown the method's potential for constructing heavily substituted arenes. Thus, *cyclo*-dehydration of the pentasubstituted arene 7, which is of relevance to our work on the synthesis of colombiasin A,⁴ gave 8 in 77% yield after 16 hours (Scheme 2).

In conclusion, a simple and inexpensive method has been developed to effect the conversion of 4-arylalk-1en-1-yl methyl ethers to the corresponding dihydronaphthalene.² Cyclisation is accomplished by warming a toluene solution of the substrate with 1,2ethanediol and *para*-toluenesulfonic acid. The reaction proceeds via the in situ formation of a 1,3-dioxolane.^{2,3} Where two cyclisation pathways are possible reactions follow the course of lowest steric demand. Electron rich, unsubstituted and halogenated arenes all give the reaction, the latter requiring extended reaction times.

Acknowledgements

The authors thank the EPSRC for a QUOTA studentship (to M.J.T.).

References

- Harrowven, D. C.; Wilden, J. D.; Tyte, M. J.; Hursthouse, M. B.; Coles, S. J. *Tetrahedron Lett.* **2001**, *42*, 1193.
- Related cyclisations of methyl vinyl ethers for the synthesis of condensed polyaromatics have been reported using tris-(4-bromophenyl)aminium hexachloroantimonate and methanesulfonic acid. See (a) Lapouyade, R.; Villeneuve, P.; Nourmamode, A.; Morand, J.-P. J. Chem. Soc., Chem. Commun. 1987, 776; (b) Kumar, S. J. Org. Chem. 1997, 62, 8535; (c) Zhang, J.-T.; Harvey, R. G. Tetrahedron 1999, 55, 625.
- Related cyclisations of acetals akin to 4 are well precedented. See (a) Meyers, A. I.; Schmidt, W.; Santiago, B. *Heterocycles* 1995, 40, 525; (b) Hallinan, K. O.; Honda, T. *Tetrahedron* 1995, 51, 12211; (c) van Dijk, J. T. M.; Hartwijk, A.; Bleeker, A. C.; Lugtenburg, J.; Cornelisse, J. J. Org. Chem. 1996, 61, 1136; (d) Shimizu, M.; Kamikubo, T.; Ogasawara, K. *Heterocycles* 1997, 46, 21; (e) Zhang, F.-J.; Cortez, C.; Harvey, R. G. J. Org. Chem. 2000, 65, 3952.
- 4. Harrowven, D. C.; Tyte, M. J. Tetrahedron Lett. 2001, 42, 8709.